Characterization of the agonistic behavior of the weakly electric fish Gymnotus sylvius

Author:

Perrone Rossana12ORCID,Hurtado Alejandra3,Silva Ana4,Black‐Décima Patricia3

Affiliation:

1. Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay

2. Facultad de Psicología Universidad de la República Montevideo Uruguay

3. Facultad de Ciencias Naturales e IML Universidad Nacional de Tucumán Tucumán Argentina

4. Laboratorio de Neurociencias Facultad de Ciencias Montevideo Uruguay

Abstract

AbstractElectric fish are good models in neuroethology as any behavior in electric fish involves both locomotor and electrical displays, which are experimentally accessible and controlled by well‐known neural circuits. The agonistic behavior within the genus Gymnotus has been evaluated in Gymnotus carapo and Gymnotus omarorum, providing an advantageous model system to address comparative analyses. Gymnotus sylvius is a weakly electric fish which occurs in sympatry with G. omarorum in freshwater environments of Argentina. Here, we describe the agonistic behavior of G. sylvius in laboratory conditions. All dyads engaged in intense fights, with a latency to the first attack of 8 ± 7.8 s and a contest phase of 42.71 ± 31.7 s. Individual initiative in the first attack predicted contest outcome with no apparent influence of body weight asymmetry between contenders. Contenders did not escalate in their aggression during the short contest; in turn, subordinates tended to retreat in response to dominants' attacks. Submission and dominance were expressed by electric signals: dominants increased their basal electric organ discharge (EOD) rate after contest resolution, resulting in a persistent EOD rate rank. Subordinates also emitted chirps and offs during the contest and post‐resolution phases without a clear temporal pattern. The agonistic behavior of G. sylvius presents some similarities with other species of the genus Gymnotus: EOD rank between dominants and subordinates, electric signals of submission, and the presence of attacks in the post‐resolution phase. On the other hand, it also presents differences: a shorter evaluation phase in G. sylvius, initiative as a determinant of outcome, a higher attack rate of dominants in G. sylvius, a different temporal pattern of chirps, and different mechanisms to separate EOD rate of dominants and subordinates. These facts open a promising road to analyze the evolution of different neuroendocrine strategies, operating on homologous neural pathways, to command the same behavior.

Funder

Comisión Sectorial de Investigación Científica

Universidad Nacional de Tucumán

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3