Affiliation:
1. Department of Physics, Laboratory of Biomedical Physics BIMEF University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
Abstract
AbstractSingle‐reed musical instruments, such as the saxophone, generate sound through a complex interplay between the mechanics of the reed and the hydrodynamic and acoustic pressure in the instrument mouthpiece. To understand this complex mechanism, experimental data are lacking. This paper presents full‐field, time‐resolved measurements of strain and displacement of a vibrating saxophone reed, measured under mimicked realistic playing conditions. It is found that strain along the length axis of the reed is mainly expansive, except in a small zone near the tip where it becomes compressive when the reed touches the front edge of the mouthpiece. At the instant in the vibration phase where the reed touches the mouthpiece, significant bending and compressive strain appear along the direction perpendicular to the reed axis. Strain magnitudes in both directions are similar, with absolute values of 0.1%. Full‐field strain maps reveal subtle characteristics which are not revealed by displacement measurements. Bi‐axial bending and strain may be an essential component in reed mechanics, which up till now has been fully neglected in modelling.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献