Affiliation:
1. Department of Pathology and Experimental Cancer Research Semmelweis University Budapest Hungary
2. Department of Pathology Yale School of Medicine New Haven CT USA
3. Center for the Precision Medicine of Trophoblastic Disease Yale School of Medicine New Haven CT USA
Abstract
AimsDiagnostic separation of diandric triploid gestation, i.e. partial mole from digynic triploid gestation, is clinically relevant, as the former may progress to postmolar gestational trophoblastic neoplasia. The aim of the study was to investigate if the combination of abnormal histology combined with ploidy analysis‐based triploidy is sufficient to accurately diagnose partial mole.Methods and ResultsA genotype–phenotype correlation study was undertaken to reappraise histological parameters among 20 diandric triploid gestations and 22 digynic triploid gestations of comparable patient age, gestational weeks, and clinical presentations. Two villous populations, irregular villous contours, pseudoinclusions, and syncytiotrophoblast knuckles, were common in both groups. Villous size ≥2.5 mm, cistern formation, trophoblastic hyperplasia, and syncytiotrophoblast lacunae were significantly more common in the partial hydatidiform mole. Cistern formation had the highest positive predictive value (PPV) (93%) and highest specificity (96%) for diandric triploid gestation, although the sensitivity was 70%. Cistern formation combined with villous size ≥2.5 mm or trophoblast hyperplasia or syncytiotrophoblast lacunae had 100% specificity and PPV, but a marginal sensitivity of 60%–65%. A moderate interobserver agreement (Kappa = 0.57, Gwet's AC1 = 0.59) was achieved among four observers who assigned diagnosis of diandric triploid gestation or digynic triploidy solely based on histology.ConclusionsNone of histological parameters are unique to either diandric triploid gestation or digynic triploid gestation. Cistern formation is the most powerful discriminator, with 93% PPV and 70% sensitivity for diandric triploid gestation. While cistern formation combined with either trophoblastic hyperplasia or villous size ≥2.5 mm or syncytiotrophoblast lacunae has 100% PPV and specificity for diandric triploid gestation, the sensitivity is only 60% to 65%. Therefore, in the presence of triploidy, histological assessment is unable to precisely classify 35% to 40% of diandric triploid gestations or partial moles.