Inferring the distribution of norovirus in individual oysters below the limit of quantification by pooled sampling

Author:

Wang Jianxin1,Zhou Chen1,Wang Yeru12

Affiliation:

1. School of Information Beijing Forestry University Beijing China

2. Risk Assessment Division 1, China National Center for Food Safety Risk Assessment Beijing China

Abstract

AbstractNorovirus (NoV) in oysters is a food safety risk of much concern. In order to assess the risk of the exposure, the distribution of the number of NoV copies contained in each oyster should be acquired first for comprehensively quantifying the associated risks. However, the part of the distribution below the limit of quantification cannot be obtained directly by laboratory detecting methods, which hampers accurate assessment. To tackle this challenging problem, a systematic method (Distribution Inference Method by Pooled Sampling) is proposed to infer the unobservable part of distribution based upon all measurements of the pooled samples with n = 2. Using convolutional integrals and real‐coded genetic algorithm for inferring, this method has neither requirements for the type or properties of the original distribution, nor requirements for historical data, even nor requirements for the relationship between observable and unobservable parts of the distribution. A series of experiments were conducted on simulated datasets of a variety of types, including normal distribution, uniform distribution, gamma distribution, lognormal distribution, zero‐inflated Poisson distribution, their combinations, and even their splicing, covering common distribution types in oyster NoV scenario and more general scenarios. The results show that almost all inferred simulation data and their original counterparts passed Kolmogorov–Smirnov tests, which implies that they are essential of the same distribution. Based on this method, a ready‐to‐use web system was developed for researchers to infer their original distribution with pooled‐sampling measurements from the detection of NoV or even other substances.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3