Obesity‐induced upregulation of miR‐483‐5p impairs the function and identity of pancreatic β‐cells

Author:

Yuan Honglei1,He Mei1,Yang Qinnan2,Niu Fandi1,Zou Yuchen2,Liu Chen2,Yang Yang 1,Liu Aiming2,Chang Xiaoai1,Chen Fang1,Wu Tijun1,Han Xiao1,Zhang Yaqin1ORCID

Affiliation:

1. Key Laboratory of Human Functional Genomics of Jiangsu Province Nanjing Medical University Nanjing China

2. The First Clinical School of Nanjing Medical University Nanjing Medical University Nanjing China

Abstract

AbstractAimTo assess the expression and function of miR‐483‐5p in diabetic β cells.MethodsThe expression of miR‐483‐5p was evaluated in the pancreatic islets of obesity mouse models by quantitative reverse transcription polymerase chain reaction. Dual‐luciferase activity, and western blotting assays, were utilized for miR‐483‐5p target gene verification. Mice with β cell‐specific miR‐483‐5p downregulation were studied under metabolic stress (i.e. a high‐fat diet) condition. Lineage tracing was used to determine β‐cell fate.ResultsmiR‐483‐5p increased in the islets of obese mouse models. Expression levels of miR‐483‐5p were significantly upregulated with the treatment of high glucose and palmitate, in both MIN6 cells and mouse islets. Overexpression of miR‐483‐5p in β cells results in impaired insulin secretion and β‐cell identity. Cell lineage‐specific analyses revealed that miR‐483‐5p overexpression deactivated β‐cell identity genes (insulin, Pdx1 and MafA) and derepressed β‐cell dedifferentiation (Ngn3) genes. miR‐483‐5p downregulation in β cells of high‐fat diet‐fed mice alleviated diabetes and improved glucose intolerance by enhancing insulin secretory capacity. These detrimental effects of miR‐483‐5p relied on its seed sequence recognition and repressed expression of its target genes Pdx1 and MafA, two crucial markers of β‐cell maturation.ConclusionsThese findings indicate that the miR‐483‐5p–mediated reduction of mRNAs specifies β‐cell identity as a contributor to β‐cell dysfunction via the loss of cellular differentiation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3