Functional diversity does not explain the co‐occurrence of non‐native species within a flow‐modified African river system

Author:

Mpopetsi Pule P.1ORCID,Kadye Wilbert T.12ORCID

Affiliation:

1. Department of Ichthyology and Fisheries Science Rhodes University Makhanda South Africa

2. South African Institute for Aquatic Biodiversity Makhanda South Africa

Abstract

AbstractGlobally, there is growing concern on the occurrence of multiple non‐native species within invaded habitats. Proliferation of multiple non‐native species together with anthropogenic‐driven habitat modifications raise questions on the mechanisms facilitating the co‐occurrence of these species and their potential impact within the recipient systems. Using the Great Fish River system (South Africa) which is anthropogenically‐modified by inter‐basin water transfer (IBWT), as a case study, this research employed trait‐based approaches to explore patterns associated with the co‐occurrence of multiple non‐native fish species. This was achieved by investigating the role of functional diversity of non‐native and native fishes in relation to their composition, distribution and environmental relationships. Nineteen functional traits that defined two broad ecological attributes (habitat use and feeding) were determined for 13 fish species that comprised eight native and five non‐native fishes. We used these data to, firstly, evaluate functional diversity patterns and to compare functional traits of native and non‐native fishes in the Great Fish River system. Secondly, we employed multivariate ordination analyses (factor analysis, RLQ and fourth‐corner analyses) to investigate interspecific trait variations and potential species‐trait‐environmental relationships. From a functional diversity perspective, there were no significant differences in most functional diversity indices between native and non‐native species. Despite interspecific variation in body morphology‐related traits, we also found no clear separation between native and non‐native species based on the ordination analysis of the functional traits. Furthermore, while RLQ ordination showed broad spatial patterns, the fourth‐corner analyses revealed no significant relationships of species distribution, functional traits and environmental variables. The weak species‐trait‐environment relationship observed in this study suggests that environmental filtering was likely a poor determinant of functional trait structure within the Great Fish River. Modification of the natural flow regime may have weakened the relationship between species traits and environment as has been shown in other systems.

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3