Extraradical hyphae exhibit more plastic nutrient‐acquisition strategies than roots under nitrogen enrichment in ectomycorrhiza‐dominated forests

Author:

Zhu Xiaomin123ORCID,Lambers Hans4,Guo Wanji5,Chen Dongdong1,Liu Zhanfeng23ORCID,Zhang Ziliang6,Yin Huajun1ORCID

Affiliation:

1. CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China‐Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu China

2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden Chinese Academy of Sciences Guangzhou China

3. South China National Botanical Garden Guangzhou China

4. School of Biological Sciences University of Western Australia Perth Western Australia Australia

5. Sichuan University Chengdu Sichuan China

6. Institute for Sustainability, Energy, and Environment University of Illinois at Urbana‐Champaign Urbana Illinois USA

Abstract

AbstractEctomycorrhizal (ECM) functional traits related to nutrient acquisition are impacted by nitrogen (N) deposition. However, less is known about whether these nutrient‐acquisition traits associated with roots and hyphae differentially respond to increased N deposition in ECM‐dominated forests with different initial N status. We conducted a chronic N addition experiment (25 kg N ha−1 year−1) in two ECM‐dominated forests with contrasting initial N status, that is, a Pinus armandii forest (with relatively low N availability) and a Picea asperata forest (with relatively high N availability), to assess nutrient‐mining and nutrient‐foraging strategies associated with roots and hyphae under N addition. We show that nutrient‐acquisition strategies of roots and hyphae differently respond to increased N addition. Root nutrient‐acquisition strategies showed a consistent response to N addition, regardless of initial forest nutrient status, shifting from organic N mining toward inorganic N foraging. In contrast, the hyphal nutrient‐acquisition strategy showed diverse responses to N addition depending on initial forest N status. In the Pinus armandii forest, trees increased belowground carbon (C) allocation to ECM fungi thus enhancing hyphal N‐mining capacity under increased N availability. By comparison, in the Picea asperata forest, ECM fungi enhanced both capacities of P foraging and P mining in response to N‐induced P limitation. In conclusion, our results demonstrate that ECM fungal hyphae exhibit greater plasticity in nutrient‐mining and nutrient‐foraging strategies than roots do in response to changes of nutrient status induced by N deposition. This study highlights the importance of ECM associations in tree acclimation and forest function stability under changing environments.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3