Tacrolimus pharmacokinetics are influenced by CYP3A5, age, and concomitant fluconazole in pediatric kidney transplant patients

Author:

Alghamdi Alaa12,Seay Sarah3,Hooper David K.45ORCID,Varnell Charles D.45,Darland Leanna6,Mizuno Tomoyuki47ORCID,Lazear Danielle6,Ramsey Laura B.48ORCID

Affiliation:

1. Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati Ohio USA

2. College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia

3. Department of Chemistry Virginia Tech Center for Drug Discovery Blacksburg Virginia USA

4. Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Ohio USA

5. Division of Nephrology & Hypertension, James M. Anderson Center fo Health Systems Excellence Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA

6. Division of Pharmacy Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA

7. Division of Clinical Pharmacology Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA

8. Divisions of Clinical Pharmacology & Research in Patient Services Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA

Abstract

AbstractTacrolimus, the most common immunosuppressant for organ transplant, has a narrow therapeutic range and is metabolized by CYP3A4/5. Trough concentration monitoring and dosing adjustments are used to reach a therapeutic range. CYP3A5 intermediate and normal metabolizers (*1 allele carriers; IM/NM) demonstrate faster tacrolimus metabolism than poor metabolizers (PM). We analyzed the electronic health records of 93 patients aged <21 years for the first 8 weeks after a kidney transplant between January 2010 and December 2021. The target tacrolimus trough was 10–15 ng/mL in the first 4 weeks and 7–10 ng/mL in the next 4 weeks. Banked DNA was collected and genotyped for CYP3A5*3, *6, *7, and *8 alleles. We found that CYP3A5 IM/NM (n = 21) took longer than PM (n = 72) to reach the therapeutic range (7 vs. 4 days, p = 0.048). IM/NM had more dose adjustments (8 vs. 6, p = 0.025) and needed >150% of the required daily dose compared with PM. The concentration/dose ratio was influenced by age and concomitant fluconazole (p = 0.0003, p = 0.034, respectively) and the average daily dose decreases with age in CYP3A5 PM (p = 0.001). Tremors were more common in patients who ever had a trough concentration >15 ng/mL compared with those who never had a trough concentration >15 ng/mL (OR 3.31, 95% CI 1.03–8.98, p = 0.038). Using standard dosing, CYP3A5 IM/NM took longer to reach the goal range and require more dose adjustments and higher doses than PM. Preemptive genotyping could decrease the number of dose changes necessary to reach a therapeutic dose. We have implemented pre‐transplant CYP3A5 testing at our institution.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3