Dynamic personalized prediction of the individual liver‐related risk after sustained viral response in HCV patients

Author:

Moreau Clémence1,Roux Marine1,Riou Jérémie23,Canivet Clémence M.14,Audureau Etienne5,Lusivika‐Nzinga Clovis6ORCID,Nahon Pierre78,Carrat Fabrice69,Boursier Jérôme14,

Affiliation:

1. Laboratoire HIFIH, UPRES EA3859, SFR 4208 Université d'Angers Angers France

2. Centre Hospitalier Universitaire d'Angers, Délégation à la recherche clinique et à l'innovation Angers France

3. Inserm, UMR 1066, Micro et Nanomédecines translationnelles Université d'Angers Angers France

4. Centre Hospitalier Universitaire d'Angers, Service d'Hépato‐Gastroentérologie et Oncologie Digestive Angers France

5. AP‐HP, Hôpital Henri Mondor, Département de Santé Publique, and Université Paris‐Est, A‐TVB DHU, CEpiA (Clinical Epidemiology and Ageing) Unit EA7376 UPEC Créteil France

6. Sorbonne Université, Inserm, Institut Pierre‐Louis d'Epidémiologie et de Santé Publique Paris France

7. APHP, Liver Unit, Bobigny Université Sorbonne Paris Nord Bobigny France

8. Inserm, UMR‐1138 “Functional Genomics of Solid Tumors”, Centre de recherche des Cordeliers Université de Paris Paris France

9. AP‐HP, Hôpital Saint‐Antoine, Unité de Santé Publique Paris France

Abstract

AbstractSustained viral response (SVR) significantly improves the prognosis in patients with hepatitis C virus (HCV) chronic infection but does not totally alleviate the risk of liver‐related complications (LRC). We aimed to evaluate whether the dynamics of multiple measurements of simple parameters after SVR enable the development of a personalized prediction of prognosis in HCV patients. HCV mono‐infected patients who experienced SVR in two prospective cohorts (ANRS CO12 CirVir cohort: derivation set; ANRS CO22 HEPATHER cohort: validation set) were included. The study outcome was LRC, a composite criterion including decompensation of cirrhosis and/or hepatocellular carcinoma. Joint latent class modelling accounting for both biomarker trajectory and event occurrence during follow‐up was developed in the derivation set to compute individual dynamic predictions, with further evaluation in the validation set. In the derivation set (n = 695; 50 LRC during the median 3.8 [1.6–7.5] years follow‐up), FIB4 was identified as a biomarker associated with LRC occurrence after SVR. Joint modelling used sex and the dynamics of FIB4 and diabetes status to develop a personalized prediction of LRC. In the validation set (n = 7064; 273 LRC during the median 3.6 [2.5–4.9] years follow‐up), individual dynamic predictions from the model accurately stratified the risk of LRC. Time‐dependent Brier Score showed good calibration that improved with the accumulation of visits, justifying our modelling approach considering both baseline and follow‐up measurements. Dynamic modelling using repeated measurements of simple parameters predicts the individual residual risk of LRC and improves personalized medicine after SVR in HCV patients.

Funder

Agence Nationale de Recherches sur le Sida et les Hépatites Virales

Publisher

Wiley

Subject

Virology,Infectious Diseases,Hepatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3