Near‐surface plastic deformation in polycrystalline SrTiO3 via room‐temperature cyclic Brinell indentation

Author:

Okafor Chukwudalu12,Ding Kuan13,Preuß Oliver1,Khansur Neamul4ORCID,Rheinheimer Wolfgang5,Fang Xufei12ORCID

Affiliation:

1. Department of Materials and Earth Sciences Technical University of Darmstadt Darmstadt Germany

2. Institute for Applied Materials Karlsruhe Institute of Technology Karlsruhe Germany

3. Max Planck Institute for Sustainable Materials Düsseldorf Germany

4. Department of Materials Science and Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany

5. Institute of Manufacturing Technologies of Ceramic Components and Composites University of Stuttgart Stuttgart Germany

Abstract

AbstractDislocations are being used to tune versatile mechanical and functional properties in oxides with most current studies focusing on single crystals. For potentially wider applications, polycrystalline ceramics are of concern, provided that dislocations can be successfully introduced. However, in addition to preexisting pores and flaws, a major barrier for bulk plastic deformation of polycrystalline ceramics lies in the grain boundaries (GBs), which can lead to dislocation pile‐up and cracking at the GBs due to the lack of sufficient independent slip systems in ceramics at room temperature. Here, we use the cyclic Brinell indentation method to circumvent the bulk deformation and focus on near‐surface regions to investigate the plastic deformation of polycrystalline SrTiO3 at room temperature. Dislocation etch‐pit analysis suggests that plastic deformation can be initiated within the grains, at the GBs, and from the GB triple junction pores. The deformability of the individual grains is found to be dependent on the number of cycles, as also independently evidenced on single‐crystal SrTiO3 with representative surface orientations (001), (011), and (111). We also identify a grain‐size‐dependent plastic deformation.

Funder

Deutsche Forschungsgemeinschaft

California Department of Fish and Game

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3