From rapid prototyping to rapid firing: on the feasibility of high‐speed production for complex BaTiO3 components

Author:

Bhandari Subhadip1,Hanzel Ondrej2,Veteška Peter3,Janek Marián34,De Bona Emanuele5,Sglavo Vincenzo M.5ORCID,Biesuz Mattia5ORCID,Franchin Giorgia1ORCID

Affiliation:

1. Department of Industrial Engineering University of Padova Padova Italy

2. Institute of Inorganic Chemistry Slovak Academy of Sciences Bratislava Slovakia

3. Department of Inorganic Materials, Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Bratislava Slovakia

4. Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences Comenius University Bratislava Slovakia

5. Department of Industrial Engineering University of Trento Trento Italy

Abstract

AbstractDirect ink writing (DIW) is an attractive additive manufacturing (AM) technology because of its simplicity, production speed, and feedstock flexibility; in addition, the use of a limited amount of binder makes the subsequent thermal debinding process easy. Nevertheless, the conventional approach to debind and sinter AMed components remains extremely slow, representing a bottleneck in the manufacturing process. In order to address such limitation, we explored different rapid sintering strategies: ultrafast high‐temperature sintering (UHS), pressureless spark plasma sintering (P‐SPS), and fast firing (FF), for the densification of BaTiO3 components fabricated by DIW, one of the widely used lead‐free piezoceramics. All sintering technologies allow debinding and sintering of crack‐free components in a few minutes instead of several hours. The final density and microstructure are strongly dependent on the sintering atmosphere (inert for UHS and P‐SPS, air for FF) and a maximum relative density of only ≈72% was obtained when firing occurred in an inert environment, irrespective of the sintering technique (UHS and P‐SPS). An undesired phase transition from tetragonal to hexagonal BaTiO3 was also observed upon UHS and ‐PSPS. On the contrary, FF in air yielded a density of about 95% in a few minutes while maintaining the desired tetragonal polymorph. The results provide proof of feasibility for rapid processing of BaTiO3 components obtained by DIW.

Funder

Ministero dell'Università e della Ricerca

Ministero dello Sviluppo Economico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3