Chromium‐substituted bismuth titanate–niobate exhibiting superior piezoelectric performance for high‐temperature applications

Author:

Wang Qian1ORCID,Liang En‐Meng1,Wang Chun‐Ming12ORCID

Affiliation:

1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan Shandong People's Republic of China

2. Center for Optics Research and Engineering (CORE) Key Laboratory of Laser and Infrared System of Ministry of Education Shandong University Qingdao Shandong People's Republic of China

Abstract

AbstractHigh‐temperature piezoelectric ceramics with excellent piezoelectric properties are key materials for high‐temperature piezoelectric devices. In this context, bismuth titanate–niobate (Bi3TiNbO9) is one of the most promising candidates, owing to its high Curie temperature (TC) > 900°C. However, the relatively low piezoelectric response of prototype Bi3TiNbO9 does not satisfy the requirements of high‐precision and high‐sensitivity applications. Herein, chromium‐substituted Bi3TiNbO9 with a nominal composition, Bi3Ti1−xCrxNbO9 (BTN‐100xCr), was prepared using the solid‐state reaction method. Raman spectroscopy and X‐ray diffraction refinements revealed structural distortions induced by the substitution of chromium. Piezo‐response force microscopy and ferroelectric hysteresis loops showed facile polarization reversal and domain wall movement in chromium‐substituted Bi3TiNbO9. The resultant structural distortion and domain wall movement served as intrinsic and extrinsic contributions to the enhancement of the piezoelectric properties, respectively. Consequently, BTN‐1.5Cr exhibits a high piezoelectric constant (d33) of 17.7 pC/N, which is four times that of Bi3TiNbO9 (4.2 pC/N), a high TC of 908°C, and an excellent thermal stability of piezoelectric and electromechanical coupling properties up to 500°C. These results indicate that chromium substitution enhances the high‐temperature piezoelectric properties of Bi3TiNbO9, and chromium‐substituted Bi3TiNbO9 is a promising candidate for high‐temperature piezoelectric applications.

Funder

National Natural Science Foundation of China

State Key Laboratory of Crystal Materials

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3