Flexible hollow Ni/Al2O3 fibers: A sustainable and reusable catalyst for efficient dry reforming of methane

Author:

Yan Huihui1,Wang Kun1,Zhao Liping1,Zhang Peng1,Chen Han1,Liu Jing1,Gao Lian1

Affiliation:

1. State Key Laboratory for Metallic Matrix Composite Materials School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China

Abstract

AbstractA new type of Ni/Al2O3 self‐supporting catalysts, with high specific surface area, was fabricated by blow‐spinning technology. These Ni/Al2O3 self‐supporting catalysts are hollow flexible fibers and were utilized for the dry reforming of methane. The Ni/Al2O3 catalysts exhibited exceptional catalytic performance, maintaining their activity for over 150‐h at a high temperature of 800°C. The Ni nanoparticles disputed on the hollow fibers demonstrated remarkable resistance to sintering and coking during high‐temperature catalysis. This was a noteworthy feature, as sintering and coking are common challenges faced by catalysts during high‐temperature reactions. Furthermore, the catalysts retained its activity even after a rigorous 150‐h test at 800°C, indicating its durability and stability. Importantly, the Ni/Al2O3 self‐supporting could be successfully reactivated after the test, further highlighting its reusable nature. This study offers promising new avenues for the development of high‐temperature, self‐supporting, and reactivatable catalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3