Synthesis of ZrN–SiO2 core–shell particles by a sol–gel process and use as particle‐based structured coloring material

Author:

Noguchi Shinji1ORCID,Miura Akira2ORCID,Tadanaga Kiyoharu2ORCID

Affiliation:

1. Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo Japan

2. Faculty of Engineering Hokkaido University Sapporo Japan

Abstract

AbstractZrN–SiO2 core–shell particles were prepared, where the ZrN core nanoparticles and SiO2 shell were designed to exhibit localized surface plasmon resonances (LSPRs) and structural coloring. The heating of ZrO2 nanoparticles with Mg3N2 under a nitrogen gas flow produced ZrN nanoparticles with a diameter in the range of 10–20 nm. The dispersion of ZrN nanoparticles in water exhibited an absorption maximum at approximately 700 nm owing to LSPRs. An SiO2 shell was formed on the ZrN nanoparticles using a sol–gel process. Scanning transmission electron microscopy confirmed the formation of ZrN–SiO2 core–shell particles containing ZrN particles with a diameter of approximately 10 nm. The SiO2 shell thickness was controlled by varying the reaction time to form SiO2. The use of particles as a structural component of a structural color material owing to the high uniformity of the size of obtained core–shell particles was investigated. The obtained ZrN–SiO2 core–shell particles were arrayed on a glass substrate using a layer‐by‐layer method. The particle‐stacked film of the ZrN–SiO2 core–shell particles exhibited the maximum reflection depending on the particle size of the SiO2 shell.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3