Singlet oxygen‐induced alteration of bacteria associated with phytodetritus: Effect of irradiance

Author:

Burot Christopher1,Bonin Patricia1,Simon Gwénola1,Casalot Laurie1,Rontani Jean‐François1ORCID

Affiliation:

1. Aix‐Marseille University, Université de Toulon, CNRS/INSU/IRD, Mediterranean Institute of Oceanography (MIO) Marseille France

Abstract

AbstractContrasting irradiation of senescent cells of the diatom Thalassiosira sp. in association with the bacterium Pseudomonas stutzeri showed the effect of intensity of irradiance on the transfer of singlet oxygen (1O2) to bacteria attached to phytoplanktonic cells. Under low irradiances, 1O2 is produced slowly, favors the oxidation of algal unsaturated lipids (photodynamic effect), and limits 1O2 transfer to attached bacteria. However, high irradiances induce a rapid and intense production of 1O2, which diffuses out of the chloroplasts and easily reaches the attached bacteria, where it efficiently oxidizes their unsaturated membrane components. Analysis of numerous sinking particle samples collected in different regions of the Canadian Arctic showed that the photooxidation state of attached bacteria increased from ice‐covered areas to open water, in agreement with in vitro results. Photooxidation of bacteria appeared to be particularly intense in sea ice, where the sympagic algae–bacteria association is maintained at relatively high irradiances for long periods of time.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3