Phenology and thallus size in a non‐native population of Gracilaria vermiculophylla

Author:

Krueger‐Hadfield Stacy A.1ORCID,Oetterer Alexis P.1ORCID,Lees Lauren E.2ORCID,Hoffman Jessica M.1ORCID,Sotka Erik E.2ORCID,Murren Courtney J.2ORCID

Affiliation:

1. Department of Biology University of Alabama at Birmingham Birmingham Alabama USA

2. Department of Biology College of Charleston Charleston South Carolina USA

Abstract

AbstractPhenology, or seasonal variation in life cycle events, is poorly described for many macroalgal species. We describe the phenology of a non‐native population of Gracilaria vermiculophylla whose thalli are free‐living or anchored by decorating polychaetes to tube caps. At a site in South Carolina, USA, we sampled 100 thalli approximately every month from January 2014 to January 2015. We assessed the reproductive state and measured thallus size based on wet weight, thallus length, and thallus surface area from herbarium mounts. Because life cycle stage cannot be assigned using morphology, we implemented a PCR assay to determine the life cycle stage—tetrasporophyte, female gametophyte, or male gametophyte—of each thallus. Tetrasporophytes dominated throughout the year, making up 81%–100% of thalli sampled per month. Reproductive tetrasporophytes varied between 0% and 65% of monthly samples and were most common in warm summer months (July through September) when thalli also tended to be larger. The vast majority of the reproductive thalli were worm‐anchored and not fixed to hard substratum via a holdfast. Thus, free‐living thalli can be reproductive and potentially seed new non‐native populations. Given G. vermiculophylla reproduction seems tied closely to temperature, our work suggests phenology may change with climate‐related changes in seawater temperatures. We also highlight the importance of understanding the natural history of macroalgae to better understand the consequence of range expansions on population dynamics.

Funder

National Science Foundation

Publisher

Wiley

Subject

Plant Science,Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3