SIRT3 alleviates painful diabetic neuropathy by mediating the FoxO3a‐PINK1‐Parkin signaling pathway to activate mitophagy

Author:

Yang Jing1ORCID,Yu Zhuoying1,Jiang Ye1,Zhang Zixian234,Tian Yue234,Cai Jie234,Wei Min1,Lyu Yanhan1,Yang Dongsheng1,Shen Shixiong1,Xing Guo‐Gang234ORCID,Li Min1ORCID

Affiliation:

1. Department of Anesthesiology Peking University Third Hospital Beijing China

2. Neuroscience Research Institute, Peking University Beijing China

3. Department of Neurobiology, School of Basic Medical Sciences Peking University Health Science Center Beijing China

4. Key Laboratory for Neuroscience Ministry of Education of China and National Health Commission of China Beijing China

Abstract

AbstractIntroductionPainful diabetic neuropathy (PDN) is a common complication of diabetes. Previous studies have implicated that mitochondrial dysfunction plays a role in the development of PDN, but its pathogenesis and mechanism have not been fully investigated.MethodsIn this study, we used high‐fat diet/low‐dose streptozotocin‐induced rats as a model of type 2 diabetes mellitus. Behavioral testing, whole‐cell patch‐clamp recordings of dorsal root ganglion (DRG) neurons, and complex sensory nerve conduction velocity studies were used to assess peripheral neuropathy. Mitochondrial membrane potential (MMP), ATP, tissue reactive oxygen species, and transmission electron microscopy were used to evaluate the function and morphology of mitochondria in DRG. Real‐time PCR, western blot, and immunofluorescence were performed to investigate the mechanism.ResultsWe found that damaged mitochondria were accumulated and mitophagy was inhibited in PDN rats. The expression of sirtuin 3 (SIRT3), which is an NAD+‐dependent deacetylase in mitochondria, was inhibited. Overexpression of SIRT3 in DRG neurons by intrathecally administered LV‐SIRT3 lentivirus ameliorated neurological and mitochondrial dysfunctions. This was evidenced by the reversal of allodynia and nociceptor hyperexcitability, as well as the restoration of MMP and ATP levels. Overexpression of SIRT3 restored the inhibited mitophagy by activating the FoxO3a‐PINK1‐Parkin signaling pathway. The effects of SIRT3 overexpression, including the reversal of allodynia and nociceptor hyperexcitability, the improvement of impaired mitochondria and mitophagy, and the restoration of PINK1 and Parkin expression, were counteracted when FoxO3a siRNA was intrathecally injected.ConclusionThese results showed that SIRT3 overexpression ameliorates PDN via activation of FoxO3a‐PINK1‐Parkin‐mediated mitophagy, suggesting that SIRT3 may become an encouraging therapeutic strategy for PDN.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3