Encapsulation of ritonavir in solid lipid nanoparticles: in-vitro anti-HIV-1 activity using lentiviral particles

Author:

Javan Farzaneh1,Vatanara Alireza1ORCID,Azadmanesh Kayhan2,Nabi-Meibodi Mohsen3,shakouri Mehdi2

Affiliation:

1. Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

2. Department of Virology, Pasteur Institute of Iran, Tehran, Iran

3. Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Abstract Objectives In this study, ritonavir was entrapped into solid lipid nanoparticles (SLNs) employing two production methods. The prepared SLNs were characterized and antiretroviral activity was investigated for more efficient formulation. Methods Ritonavir-loaded SLNs were produced by solvent emulsification evaporation (SE) and double emulsion methods (DE), and the effects of Tween80 and poloxamer188 as external phase surfactant were compared. Prepared SLNs were characterized in terms of size, surface charge, entrapment efficiency (EE), release profile and thermal behaviour. Moreover, the activity of drug-loaded SLNs was investigated on the lentiviral-based pseudo-HIV-1 particles. Key findings The average size of negatively charged SLNs was 170–250 nm with polydispersity index (PDI) of 0.2. The most EE% was about 53.2% achieved by DE method in the presence of poloxamer188. It was found that addition of poloxamer188 in the process led to increased entrapment efficiency and particle size. The in-vitro antiviral experiment showed ritonavir SLNs can actively maintain inhibition of virus production as well as free drug. Conclusions In this study, we showed the SLNs not only can encapsulate ritonavir efficiently but also can maintain its antiviral activity and modulate drug release as promising nanocarrier.

Funder

Tehran University of Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3