Self-assembly hydrogels as multifunctional drug delivery of paclitaxel for synergistic tumour-targeting and biocompatibility in vitro and in vivo

Author:

Shu Chang1,Sabi-mouka Eboka M B1,Wang Xiaoliang2,Ding Li1ORCID

Affiliation:

1. Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China

2. Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, Nanjing University, Nanjing, China

Abstract

Abstract Objectives In this work, we designed the self-assembly peptide hydrogels to multiply therapeutic agents for improving anticancer effect and lowering adverse reaction of paclitaxel (PTX). Methods The folate (FA)-peptide-PTX hydrogels consist of self-assemble peptide hydrogel as nanoscale carrier, FA and RGD peptide as targeting moieties and paclitaxel as anticancer drug. The properties of hydrogels, such as morphology, size distribution, zeta potential and rheology, were investigated. Targeted specificity, biodistribution and anticancer effect were studied both in vitro and in vivo. Key findings Folate-peptide-PTX hydrogel nanoparticles were spherical in shape with hydrodynamic diameter of approximately 137.3 ± 15.2 nm. The hydrogels could only target monolayer cancer cells but also penetrated the nuclei of cells in vitro. The in-vivo real-time imaging further demonstrated that the hydrogels preferentially accumulated in tumour and sustained release. Compared to free paclitaxel, the FA-peptide-PTX hydrogels had higher anticancer effect and lower side effect. Conclusions The dual-targeted drug delivery possessed strong capability of synergistic targeted delivery, long-term drug release and better biocompatibility than paclitaxel both in vitro and in vivo. The results obtained demonstrated a high potential of the proposed drug delivery system in improving the therapeutic efficacy of paclitaxel.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3