Affiliation:
1. Centre of Advanced Structural Analysis (SFI‐CASA) NTNU—Norwegian University of Science and Technology Trondheim Norway
Abstract
AbstractDeformable components such as sandwich structures possess promising properties for use in protection systems. Detailed studies on energy absorption and fluid–structure interaction effects are necessary for the application of deformable sandwich structures in blast resistant design. In this paper, an existing shock tube facility has been extended with a transparent section to observe and measure fluid flow and the structural response of deformable components during transient dynamic loading. The extension was instrumented with pressure sensors and load cells to measure the pressure and force transmitted through the component during testing. The transparent design allows the use of optical measurement techniques. Here, high‐speed cameras were used both for digital image correlation and background‐oriented schlieren imaging. Tests with free‐standing plates and sandwich components were performed. A strong dependency was observed between the plate mass, and thus the velocity of the plates, and the pressure measured upstream and downstream of the components. The tests were simulated with a one‐dimensional numerical model for compressible shock flow with fluid–structure interaction. The numerical model accurately reproduced the shock flow and component displacements measured experimentally. Overall, the experimental set‐up presented in this study proved to be suitable for the detailed examination of deformable components subjected to airblast loading.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献