An experimental facility for detailed studies on energy absorbing components subjected to blast loading

Author:

Brekken Kristoffer A.1ORCID,Kaufmann Rene1,Aune Vegard1ORCID,Langseth Magnus1,Børvik Tore1

Affiliation:

1. Centre of Advanced Structural Analysis (SFI‐CASA) NTNU—Norwegian University of Science and Technology Trondheim Norway

Abstract

AbstractDeformable components such as sandwich structures possess promising properties for use in protection systems. Detailed studies on energy absorption and fluid–structure interaction effects are necessary for the application of deformable sandwich structures in blast resistant design. In this paper, an existing shock tube facility has been extended with a transparent section to observe and measure fluid flow and the structural response of deformable components during transient dynamic loading. The extension was instrumented with pressure sensors and load cells to measure the pressure and force transmitted through the component during testing. The transparent design allows the use of optical measurement techniques. Here, high‐speed cameras were used both for digital image correlation and background‐oriented schlieren imaging. Tests with free‐standing plates and sandwich components were performed. A strong dependency was observed between the plate mass, and thus the velocity of the plates, and the pressure measured upstream and downstream of the components. The tests were simulated with a one‐dimensional numerical model for compressible shock flow with fluid–structure interaction. The numerical model accurately reproduced the shock flow and component displacements measured experimentally. Overall, the experimental set‐up presented in this study proved to be suitable for the detailed examination of deformable components subjected to airblast loading.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blast effect on layered polyurethane foam;International Journal of Impact Engineering;2024-05

2. Deep learning-based analysis to identify fluid-structure interaction effects during the response of blast-loaded plates;International Journal of Protective Structures;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3