Residual stresses in Cu matrix composite surface deposits after laser melt injection

Author:

Zhang Xingxing1ORCID,Kornmeier Joana R.1,Hofmann Michael1,Langebeck Anika2,Alameddin Shadi3,Alessio Renan Pereira3,Fritzen Felix3,Bunn Jeffrey R.4,Cabeza Sandra5

Affiliation:

1. Heinz Maier‐Leibnitz Zentrum (MLZ) Technical University of Munich Garching Germany

2. BIAS – Bremer Institut fuer angewandte Strahltechnik GmbH Bremen Germany

3. Stuttgart Center for Simulation Science, Institute of Applied Mechanics (CE) University of Stuttgart Stuttgart Germany

4. Neutron Scattering Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

5. Institut Laue‐Langevin Grenoble France

Abstract

AbstractTungsten carbide particles reinforced metal matrix composite (MMC) coatings can significantly improve surface wear resistance owing to their increased surface hardness. However, the presence of macro‐ and micro‐residual stresses in MMC coatings can have detrimental effects, such as reducing service life. In this study, neutron diffraction was used to determine the residual stresses in spherical fused tungsten carbide (sFTC) reinforced Cu matrix composite surface deposits after laser melt injection. We also developed a thermo‐mechanical coupled finite element model to predict residual stresses. Our findings reveal that sFTC/Cu composite deposits produced with a preheating temperature of 400°C have low residual stresses, with a maximum tensile residual stress of 98 MPa in the Cu matrix on the top surface. In contrast, the sFTC/bronze (CuAl10Ni5Fe4) composite deposit exhibits very high residual stresses, with a maximum tensile residual stress in the Cu matrix on the top surface reaching 651 MPa. These results provide a better understanding of the magnitudes and distributions of residual stresses in sFTC‐reinforced Cu matrix composite surface deposits manufactured via laser melt injection.

Funder

Deutsche Forschungsgemeinschaft

Allianz Industrie Forschung

Institut Laue-Langevin

Oak Ridge National Laboratory

Stuttgart Center for Simulation Science, Universität Stuttgart

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3