Is source‐resolved magnetoencephalographic mismatch negativity a viable biomarker for early psychosis?

Author:

López‐Caballero Fran1ORCID,Curtis Mark1,Coffman Brian A.1,Salisbury Dean F.1ORCID

Affiliation:

1. Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

Abstract

AbstractMismatch negativity (MMN) is an auditory event‐related response reflecting the pre‐attentive detection of novel stimuli and is a biomarker of cortical dysfunction in schizophrenia (SZ). MMN to pitch (pMMN) and to duration (dMMN) deviant stimuli are impaired in chronic SZ, but it is less clear if MMN is reduced in first‐episode SZ, with inconsistent findings in scalp‐level EEG studies. Here, we investigated the neural generators of pMMN and dMMN with MEG recordings in 26 first‐episode schizophrenia spectrum (FEsz) and 26 matched healthy controls (C). We projected MEG inverse solutions into precise functionally meaningful auditory cortex areas. MEG‐derived MMN sources were in bilateral primary auditory cortex (A1) and belt areas. In A1, pMMN FEsz reduction showed a trend towards statistical significance (F(1,50) = 3.31; p = .07), and dMMN was reduced in FEsz (F(1,50) = 4.11; p = .04). Hypothesis‐driven comparisons at each hemisphere revealed dMMN reduction in FEsz occurred in the left (t(56) = 2.23; p = .03; d = .61) but not right (t(56) = 1.02; p = .31; d = .28) hemisphere, with a moderate effect size. The added precision of MEG source solution with high‐resolution MRI and parcellation of A1 may be requisite to detect the emerging pathophysiology and indicates a critical role for left hemisphere pathology at psychosis onset. However, the moderate effect size in left A1, albeit larger than reported in scalp MMN meta‐analyses, casts doubt on the clinical utility of MMN for differential diagnosis, as a majority of patients will overlap with the healthy individual's distribution.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3