Understorey vegetation moderates climate in open forests: The role of the skirt‐forming grass tree Xanthorrhoea semiplana F.Muell

Author:

Kok Xiangning1,Bruns Liene12,Guerin Greg3,Keppel Gunnar14ORCID

Affiliation:

1. UniSA STEM University of South Australia Adelaide South Australia Australia

2. School of Life Sciences and Environmental Technology ATGM Avans University of Applied Science Breda The Netherlands

3. School of Biological Sciences University of Adelaide Adelaide South Australia Australia

4. Future Industries Institute University of South Australia Adelaide South Australia Australia

Abstract

AbstractMicrosites are created by abiotic and biotic features of the landscape and may provide essential habitats for the persistence of biota. Forest canopies and understorey plants may moderate wind and solar radiation to create microclimatic conditions that differ considerably from regional climates. Skirt‐forming plants, where senescent leaves create hut‐like cavities around the stem, create microsites that are sheltered from ambient conditions and extreme weather events, constituting potential refuges for wildlife. We investigate day and night temperatures and humidity for four locations (grass tree cavities, soil, 20 cm above‐ground, 1 m above‐ground) in a South Australian forest with relatively open canopy of stringybark eucalypts (Eucalyptus baxteri, E. obliqua) and an understorey of skirt‐forming grass trees (Xanthorrhoea semiplana) at 5, 10, 20, and 40 m from the forest edge. We also measured the percentage of canopy and understorey covers. Generally, temperature and humidity differed significantly between more sheltered (grass tree cavities, soil) and open‐air microsites, with the former being cooler during the day and warmer and more humid during the night. Furthermore, our results suggest that canopy cover tends to decrease, and understorey cover tends to increase, the temperature of microsites. Distance to the edge was not significantly related to temperature for any microsite, suggesting that the edge effect did not extend beyond 10 m from the edge. Overall, grass trees influenced microclimatic conditions by forming a dense understorey and providing cavities that are relatively insulated. The capacity of grass tree cavities to buffer external conditions increased linearly with ambient temperatures, by 0.46°C per degree increase in maximum and 0.25°C per degree decrease in minimum temperatures, potentially offsetting climate warming and enabling persistence of fauna within their thermal limits. These climate moderation properties will make grass trees increasingly important refuges as extreme weather events become more common under anthropogenic climate change.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3