QTL mapping of nitrogen use efficiency traits at the seedling and maturity stages under different nitrogen conditions in barley (Hordeum vulgare L.)

Author:

Zeng Zhaoyong12,Song Shiyun1,Ma Jian2ORCID,Hu Deyi1,Xu Yinggang1,Hou Yao1,Chen Huangxin2,Chen Yi1,Huo Yuanfeng1,Li Yang1,Tang Xiaoyan1,Lan Ting1,Gao Xuesong1,Chen Guangdeng1ORCID

Affiliation:

1. College of Resources Sichuan Agricultural University Chengdu China

2. Triticeae Research Institute Sichuan Agricultural University Chengdu China

Abstract

AbstractNitrogen (N) is an essential element for plant growth and development. The identification and utilization of N use efficiency (NUE) loci are essential for breeding high NUE cultivars. In this study, 15 NUE traits were measured in a recombinant inbred line population containing 121 lines derived from the cross between a cultivated barley (Baudin) and a wild barley (CN4027). The hydroponic culture was conducted with normal N and low N treatments in one‐time frame, and field trials were conducted with N sufficiency and N deficiency treatments in two growing seasons. Twenty‐two quantitative trait loci (QTLs) and four clusters were detected. Of them, the five stable QTLs Qgna.sau‐3H for grain N concentration, Qtna.sau‐3H for total N accumulation per plant, Qnhi.sau‐3H for N harvest index, Qnutegy.sau‐3H for N utilization efficiency for grain yield and Qanutedm.sau‐3H.1 for N utilization efficiency for aboveground dry matter were co‐located on chromosome 3H flanked by the markers bpb6282426 and bpb4786261. These two novel QTL clusters simultaneously controlled NUE traits at the seedling and maturity stages. Some genes related to NUE traits in intervals of the major QTLs were predicted. The significant relationships between NUE traits and agronomic and physiological traits were detected and discussed. In conclusion, this study uncovers the most promising genomic regions for the marker‐assisted selection of NUE traits to improve NUE in barley.

Funder

Science Fund for Distinguished Young Scholars of Sichuan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Genetics,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3