Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt

Author:

Jiusti Jeanini1ORCID,Regnier Elise1ORCID,Machado Norma Maria1,Ghazzai Mohamed Leith1,Malivert Vincent1,Neyret Muriel1,Faure François2

Affiliation:

1. CEA, DES, ISEC, DPME, SEME, LFCM Univ Montpellier CEA‐Marcoule Bagnols‐sur‐Cèze Cedex France

2. CNRS, CRPG, UMR 7358 Université de Lorraine Vandoeuvre‐lès‐Nancy France

Abstract

AbstractIn France, high‐activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium‐aluminoborosilicate glass by high‐temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO2) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce2O3 wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce2O3 is highly soluble in the glass melt, as even for a Ce2O3 wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce2O3 content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well‐known platinum group metal (PGM)‐bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.

Publisher

Wiley

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3