Reproductive collapse in European beech results from declining pollination efficiency in large trees

Author:

Bogdziewicz Michał1ORCID,Kelly Dave2,Tanentzap Andrew J.3,Thomas Peter4,Foest Jessie5,Lageard Jonathan6,Hacket‐Pain Andrew5ORCID

Affiliation:

1. Forest Biology Center Institute of Environmental Biology, Faculty of Biology Adam Mickiewicz University Poznan Poland

2. Centre for Integrative Ecology School of Biological Sciences University of Canterbury Christchurch New Zealand

3. Ecosystems and Global Change Group Department of Plant Sciences University of Cambridge Cambridge UK

4. School of Life Sciences Keele University Keele UK

5. Department of Geography and Planning School of Environmental Sciences University of Liverpool Liverpool UK

6. Department of Natural Sciences Manchester Metropolitan University Manchester UK

Abstract

AbstractClimate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production (“masting breakdown”) which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship—correlation between tree size and viable seed production—has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand‐ and biogeographical‐level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.

Funder

Narodowa Agencja Wymiany Akademickiej

Narodowe Centrum Nauki

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3