The nucleotide‐binding domain of NRC‐dependent disease resistance proteins is sufficient to activate downstream helper NLR oligomerization and immune signaling

Author:

Contreras Mauricio P.1ORCID,Pai Hsuan1ORCID,Thompson Rebecca1ORCID,Marchal Clemence1ORCID,Claeys Jules1ORCID,Adachi Hiroaki1ORCID,Kamoun Sophien1ORCID

Affiliation:

1. The Sainsbury Laboratory University of East Anglia Norwich Research Park Norwich NR4 7UH UK

Abstract

Summary Nucleotide‐binding domain and leucine‐rich repeat (NLR) proteins with pathogen sensor activities have evolved to initiate immune signaling by activating helper NLRs. However, the mechanisms underpinning helper NLR activation by sensor NLRs remain poorly understood. Although coiled coil (CC) type sensor NLRs such as the Potato virus X disease resistance protein Rx have been shown to activate the oligomerization of their downstream helpers NRC2, NRC3 and NRC4, the domains involved in sensor–helper signaling are not known. Here, we used Agrobacterium tumefaciens‐mediated transient expression in Nicotiana benthamiana to show that the nucleotide‐binding (NB) domain within the NB‐ARC of Rx is necessary and sufficient for oligomerization and immune signaling of downstream helper NLRs. In addition, the NB domains of the disease resistance proteins Gpa2 (cyst nematode resistance), Rpi‐amr1, Rpi‐amr3 (oomycete resistance) and Sw‐5b (virus resistance) are also sufficient to activate their respective downstream NRC helpers. Using transient expression in the lettuce (Lactuca sativa), we show that Rx (both as full length or as NB domain truncation) and its helper NRC2 form a minimal functional unit that can be transferred from solanaceous plants (lamiids) to Campanulid species. Our results challenge the prevailing paradigm that NLR proteins exclusively signal via their N‐terminal domains and reveal a signaling activity for the NB domain of NRC‐dependent sensor NLRs. We propose a model in which helper NLRs can perceive the status of the NB domain of their upstream sensors.

Funder

European Research Council

Gatsby Charitable Foundation

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3