Heated fibre optics to monitor soil moisture under successive saturation–drying cycles: An experimental approach

Author:

Bertotto Luis Eduardo1ORCID,Reis Alan12ORCID,Cobalchini Érick Rúbens Oliveira1ORCID,Schwamback Dimaghi13ORCID,Sousa Mota Uchôa José Gescilam1ORCID,Wendland Edson Cezar1ORCID

Affiliation:

1. Department of Hydraulics and Sanitation, São Carlos School of Engineering University of São Paulo São Carlos Brazil

2. Federal Institute of São Paulo Caraguatatuba Brazil

3. Division of Water Resources Engineering, Department of Building and Environmental Technology Lund University Lund Sweden

Abstract

AbstractIn recent decades, distributed temperature sensing (DTS) has emerged as a robust technology for environmental applications, enabling high‐resolution temperature measurements along fibre optic cables (FOCs). The actively heated fibre optic (AHFO) method is employed to monitor soil moisture (, m3 m−3), wherein the soil temperature subsequent to the application of a heat pulse is measured by a DTS (AHFO‐DTS approach). Despite significant improvements in the application of AHFO‐DTS under controlled and natural conditions, the thermal behaviour of soil during multiple saturation–natural drying cycles has been insufficiently evaluated. This study aimed to address this gap by constructing an experimental horizontal soil profile in the laboratory for the application of the AHFO‐DTS method during two successive saturation–drainage–evaporation (SDE) cycles. Three heating strategies were applied to a metallic alloy in contact with a FOC, and calibration models were used to correlate with the thermal conductivity (), cumulative temperature increase (), and maximum temperature increase (). The results indicated that during the second SDE cycle, the highest errors in estimates were observed with the low power‐short heat pulse, whereas the application of the low power‐long duration and high power‐short duration pulses improved the accuracy of calculations. Additionally, errors in estimates escalated under wetter conditions, attributed to a shift in soil heat transfer capacity from the first to the second SDE cycle for > 0.10 m3 m−3. This behaviour was ascribed to thermal hysteresis, arising from the contact resistance of the FOC and the alloy with the surrounding soil. Furthermore, the method exhibited the least sensitivity to this effect and yielded reliable estimates, thus its adoption is recommended. Moreover, the use of the low power‐long duration heating strategy is suggested as it promotes a trade‐off between energy saving and accurate estimates. We concluded that assessing soil thermal response under multiple SDE cycles enhances the comprehension of the AHFO‐DTS method. Overall, our findings provide insights into enhancing the applicability of this approach under field conditions, particularly following irrigation schedules and natural rainfall events.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3