Lichen biocrusts contribute to soil microbial biomass carbon in the northern temperate zone: A meta‐analysis

Author:

Tian Chang1234ORCID,Bu Chongfeng12,Wu Shufang5,Siddique Kadambot H. M.6

Affiliation:

1. Institute of Soil and Water Conservation Northwest A & F University Yangling China

2. Institute of Soil and Water Conservation CAS & MWR Yangling China

3. Bio‐Agriculture Institute of Shaanxi Xi'an China

4. Enzyme Engineering Research Center of Shaanxi Xi'an China

5. College of Water Resources and Architectural Engineering Northwest A & F University Yangling China

6. The UWA Institute of Agriculture and School of Agriculture & Environment The University of Western Australia Perth Australia

Abstract

AbstractBiological soil crusts (biocrusts) have crucial ecological functions in dryland ecosystems, yet understanding the variations in soil microbial biomass within biocrusts across diverse ecosystems, climates and soil conditions remains limited. This knowledge gap constrains our understanding of how microbial communities within biocrusts regulate terrestrial carbon and nitrogen cycling. Hence, we conducted a meta‐analysis using 255 paired observations from 42 study sites across the northern temperate ecosystem. The analysis revealed that biocrusts harbour significantly higher soil microbial biomass carbon and nitrogen (SMBC and SMBN, respectively) levels than bare (non‐biocrust) soil across all habitat types. Notably, deeper soil layers (5–10 and >10 cm) accumulated less SMBC and SMBN than biocrust and biocrust–5‐cm soil, revealing that biocrusts influence shallow soil environments. Ecosystem type, soil texture, depth and season emerged as key factors influencing the distribution of SMBC within biocrusts. Of particular interest, lichen biocrusts accumulated the most SMBC compared with other biocrust types. Furthermore, the difference in SMBC between biocrust and non‐biocrust soils was more pronounced in oligotrophic habitats (e.g., desert, grassland, sand and sandy loam soils) than in eutrophic habitats (e.g., forest and loam soils). Random forest analysis confirmed that soil variables affected SMBC accumulation in biocrusts more than climatic factors. Soil organic carbon (SOC), as the primary source of SMBC, could be the most important determinant. Moreover, the disparity between non‐biocrust SMBC and biocrust SMBC increased with increasing mean annual temperature (MAT) or decreasing altitude. These insights underscore the substantial contribution of lichen biocrusts to SMBC and emphasize the need to incorporate this knowledge into regional models for predicting the effects of climate change on soil carbon budgets within biocrust microbiomes in temperate ecosystems of the Northern Hemisphere.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3