Tree species identity affects soil P bioavailability by altering labile organic P after tree mixing in subtropical China

Author:

Deng Piaoyun1,Zhou Yunchao1ORCID,Tang Fenghua1,Chen Wensha1

Affiliation:

1. Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry Guizhou University Guiyang PR China

Abstract

AbstractConverting monocultures to mixed plantations has been emphasized to improve ecosystem productivity and services. However, the impact of tree species identity on phosphorus (P) bioavailability in acidic soils in subtropical China, where P is relatively scarce, is not fully understood. This study explored the changes in soil biologically‐based P fractions and the effect of mineral and microbial properties on P transformation after mixing five broadleaved trees (Bretschneidera sinensis, Manglietia conifera, Cercidiphyllum japonicum, Michelia maudiae and Camellia oleifera) individually with coniferous trees (Pinus massoniana). The results showed that most mixed plantations significantly increased pH and citric acid and decreased exchangeable Fe3+ and Al3+ and the activation of Fe and Al oxides compared with monospecific plantations, which significantly reduced P precipitation and adsorption. Mixed planting significantly increased phosphatase activity and altered the community composition of P‐mobilizing bacteria carrying phoD and pqqC genes, which contributed to organic P mineralization and inorganic P (Pi) desorption. Mixed planting increased microbial biomass and the relative rate of microbial biomass P turnover. Labile organic P (Enzyme‐P) was a potentially significant source of soluble Pi (CaCl2‐P) among the biologically‐based P fractions, plus microbial biomass P. Overall, introducing broadleaved species, especially in species (e.g. Cercidiphyllum japonicum, Michelia maudiae and Camellia oleifera) with relatively high litter quality and belowground secretions (e.g. citric acid, phosphatase), significantly increased the solubilization of recalcitrant Pi (HCl‐P), desorption of chemisorbed Pi (Citrate‐P) and accumulation and mineralization of Enzyme‐P, thereby increasing the available P pools. Redundancy analysis demonstrated that P fractions were mainly driven by phosphatases, exchangeable cations, floor fresh litter lignin/N and citric acid. Altogether, we highlight the importance of choosing tree species mixtures that have synergistic or complementary effects when constructing mixed plantations in order to alleviate soil P limitations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3