How does soil water retention change over time? A three‐year field study under several production systems

Author:

Pirlot Clémence1ORCID,Renard Anne‐Catherine1,De Clerck Caroline1,Degré Aurore1

Affiliation:

1. Uliège, Gembloux Agro‐Bio Tech, TERRA Teaching and Research Centre Gembloux Belgium

Abstract

AbstractAgricultural practices and meteorological conditions affect soil structure and soil hydraulic properties. However, their temporal evolution is rarely studied, and even less in the field. Thus, their dynamics are rarely taken into account in models, often leading to inconsistent results and poor decision making. In this study, the temporal evolution of water retention properties and soil structure was monitored over a 3‐year period under several contrasting production systems. Soil Water Retention Curves (SWRCs) obtained directly in the field (with soil water content and potential sensors) were compared with theoretical SWRCs predicted by pedotransfer functions (PTFs) and laboratory SWRCs measured on undisturbed samples. Bulk densities were measured every 2 months. Results indicate a high degree of variability in SWRCs over time and between production systems. The results suggest that variations in the soil water retention behaviour can be induced by crop differentiation, weed control, crop residue management, compaction during harvest, or the introduction of temporary grassland. Contrasting climatic conditions between 2021 (water excess), 2022 (severe drought) and 2023 (intermediate) provided a unique opportunity to study the resilience of the crop systems to extreme climatic conditions. Different soil drying dynamics were observed and some agricultural practices were identified as influencing the soil water retention behaviour for at least 2 years. Comparison of SWRCs showed that the theoretical curves obtained from PTFs are not a good representation of the field SWRCs, especially for less conventional agricultural practices. The laboratory curves are closer with similar trends. However, these SWRCs are not optimal for investigating the temporal evolution of water retention properties. This research also shows that agricultural practices and crops can be levers for contributing to greater food resilience against future climatic conditions. Therefore, to assess the relevance of production systems for tomorrow's needs, studies should focus on the impact of multi‐cropping systems on water retention dynamics in the field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3