Soil organic carbon fractions and storage potential in Finnish arable soils

Author:

Salonen Anna‐Reetta12ORCID,de Goede Ron1ORCID,Creamer Rachel1ORCID,Heinonsalo Jussi34,Soinne Helena5ORCID

Affiliation:

1. Soil Biology Group, Department of Environmental Sciences Wageningen University & Research Wageningen Netherlands

2. Environmental Soil Science, Department of Agricultural Sciences University of Helsinki Helsinki Finland

3. Department of Forest Sciences University of Helsinki Helsinki Finland

4. Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland

5. Natural Resources Institute Finland (LUKE) Helsinki Finland

Abstract

AbstractUnderstanding the factors affecting the total amount and distribution of soil organic carbon (OC) across different functional carbon pools is important to better define the future management of soil OC stocks. The interactions between soil management practices, local physicochemical soil properties and climate are essential for determining the OC content of the soil. Nevertheless, how these factors affect the total amount of OC and its distribution across carbon pools, i.e., more labile particulate (POC) and more stable mineral‐associated (MAOC) organic carbon, is only partly known. In this study, we assessed topsoil (0–20 cm) samples from 93 arable farms in the southern half of Finland to determine the total amount of OC, and its distribution in MAOC and POC, along with relevant soil properties (amount of clay and silt, aluminium and iron oxides and pH), climate (precipitation and temperature) and fertilization (mineral versus organic). The fertilization did not affect the total soil carbon content (12–58 g OC kg−1 soil). The share of OC in the MAOC fraction (on average 86% of total OC) was relatively stable across the large range of OC contents and clay contents (2%–68%). We assessed the highest feasible MAOC of the soils with boundary line analyses and their OC saturation state with Hassink's equation (Hassink, 1997). Only soils with the lowest clay content (<10% clay) were assumed to be carbon‐saturated, suggesting that most of the studied soils have a capacity to accrue more MAOC. Simple linear regression showed that clay, aluminium and iron oxides explained 9%, 21% and 22% of the variation in MAOC, respectively. Multiple regression analyses including the amount of clay, clay+silt, aluminium and iron oxides, pH, type of fertilization, precipitation and temperature as explanatory variables explained 33%–53% of the variation in OC and MAOC. In all soils, aluminium oxides were important explanatory variable for MAOC, whereas Fe oxides were significant only in soils with higher clay content (>30%). In soils with a low clay content (<30%), pH had added value in explaining MAOC. Altogether, it seems that various climatic, edaphic and soil management‐related factors are context‐dependently controlling OC and that soil textural information alone is not necessarily an adequate predictor to assess the MAOC saturation state of the soil.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3