Poverty and Inequality Mapping Based on a Unit-Level Log-Normal Mixture Model

Author:

Gardini Aldo1,Fabrizi Enrico2,Trivisano Carlo1

Affiliation:

1. Università di Bologna , Bologna , Italy

2. Università Cattolica del S. Cuore , Piacenza , Italy

Abstract

Abstract Estimating poverty and inequality parameters for small sub-populations with adequate precision is often beyond the reach of ordinary survey-weighted methods because of small sample sizes. In small area estimation, survey data and auxiliary information are combined, in most cases using a model. In this paper, motivated by the analysis of EU-SILC data for Italy, we target the estimation of a selection of poverty and inequality indicators, that is mean, headcount ratio and quintile share ratio, adopting a Bayesian approach. We consider unit-level models specified on the log transformation of a skewed variable (equivalized income). We show how a finite mixture of log-normals provides a substantial improvement in the quality of fit with respect to a single log-normal model. Unfortunately, working with these distributions leads, for some estimands, to the non-existence of posterior moments whenever priors for the variance components are not carefully chosen, as our theoretical results show. To allow the use of moments in posterior summaries, we recommend generalized inverse Gaussian distributions as priors for variance components, guiding the choice of hyperparameters.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

Reference46 articles.

1. On the measurement of poverty;Atkinson;Econometrica,1987

2. Indicators and targets for social inclusion in the European union;Atkinson;Journal of Common Market Studies,2004

3. An error-components model for prediction of county crop areas using survey and satellite data;Battese;Journal of the American Statistical Association,1988

4. Small area prediction for a unit-level lognormal model;Berg;Computational Statistics & Data Analysis,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Generalized Hyperbolic Distributions;Computational Economics;2023-08-25

2. Small area estimation of inequality measures using mixtures of Beta;Journal of the Royal Statistical Society Series A: Statistics in Society;2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3