Affiliation:
1. Laboratory of Systems and Synthetic Biology Wageningen University & Research Wageningen The Netherlands
Abstract
AbstractPrincipal Component Analysis (PCA) is a powerful statistical technique for reducing the complexity of data and making patterns and relationships within the data more easily understandable. By using PCA, students can learn to identify the most important features of a data set, visualize relationships between variables, and make informed decisions based on the data. As such, PCA can be an effective tool to increase students data literacy by providing a visual and intuitive way to understand and work with data. This article outlines a teaching strategy to introduce and explain PCA using basic mathematics and statistics together with visual demonstrations.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献