Exploring the impact of TGF‐β family gene mutations and expression on skin wound healing and tissue repair

Author:

Cui Kai1,Gong Sunxin1,Bai Junfeng1,Xue Liangliang1,Li Xue1,Wang Xiaodong2ORCID

Affiliation:

1. Thoracic Surgery Department Xi'an International Medical Center Hospital Xi'an China

2. Thoracic Surgery Department Second Affiliated Hospital of Fourth Military Medical University Xi'an China

Abstract

AbstractTransforming Growth Factor‐Beta (TGF‐β) signalling pathway is of paramount importance in the processes of wound healing, epidermal integrity maintenance and development of skin cancer. The objective of this research endeavour was to clarify the impact of gene mutations and variations in expression within TGF‐β family on mechanisms of tissue repair, as well as to identify potential targets for therapeutic purposes in non‐melanoma skin cancer (NMSC). The methods utilized in this study involved obtaining RNA‐seq data from 224 NMSC patients and paired normal skin tissues from the PRJNA320473 and PRJEB27606 databases. The purpose of the differential gene expression analysis was to identify genes whose expression had changed significantly. In order to evaluate the effects and interrelationships of identified gene variants, structural analysis with AlphaFold and PDB data and network analysis with the STRING database were both utilized. Critical gene expression was externally validated through the utilization of the GEPIA database. Tumour tissues exhibited a notable upregulation of genes associated with the TGF‐β pathway, specifically MMP1, MMP3, MMP9, EGF, COL3A1 and COL1A2, in comparison with normal tissues. As indicated by the central node status of these genes in the network analysis, they play a crucial role in the progression of NMSCs. The results of the structural analysis suggested that mutations might cause functional disruptions. External validation of the upregulation confirmed the expression trends and emphasized the biomarker potential of the upregulated genes. In conclusion, this research offered thorough examination of molecular modifications that occur in TGF‐β family genes, which are linked to cutaneous wound healing and NMSC. The modified expression of the identified hub genes may represent innovative targets for therapeutic intervention.

Publisher

Wiley

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3