SLC3A2 promotes tumor‐associated macrophage polarization through metabolic reprogramming in lung cancer

Author:

Li Zhuan1ORCID,Chen Songming23,He Xiang23,Gong Siyuan23,Sun Lunquan23456ORCID,Weng Liang23567ORCID

Affiliation:

1. The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Hunan Normal University School of Medicine Changsha Hunan China

2. Xiangya Cancer Center, Xiangya Hospital Central South University Changsha China

3. Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital Central South University Changsha China

4. Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer Changsha China

5. Center for Molecular Imaging of Central South University Xiangya Hospital Changsha China

6. Institute of Gerontological Cancer Research National Clinical Research Center for Gerontology Changsha China

7. Hunan Provincial Clinical Research Center for Respiratory Diseases Changsha China

Abstract

AbstractTumor‐associated macrophages (TAMs) are one of the most abundant immunosuppressive cells in the tumor microenvironment and possess crucial functions in facilitating tumor progression. Emerging evidence indicates that altered metabolic properties in cancer cells support the tumorigenic functions of TAMs. However, the mechanisms and mediators the underly the cross‐talk between cancer cells and TAMs remain largely unknown. In the present study, we revealed that high solute carrier family 3 member 2 (SLC3A2) expression in lung cancer patients was associated with TAMs and poor prognosis. Knockdown of SLC3A2 in lung adenocarcinoma cells impaired M2 polarization of macrophages in a coculture system. Using metabolome analysis, we identified that SLC3A2 knockdown altered the metabolism of lung cancer cells and changed multiple metabolites, including arachidonic acid, in the tumor microenvironment. More importantly, we showed that arachidonic acid was responsible for SLC3A2‐mediated macrophage polarization in the tumor microenvironment to differentiate into M2 type both in vitro and in vivo. Our data illustrate previously undescribed mechanisms responsible for TAM polarization and suggest that SLC3A2 acts as a metabolic switch on lung adenocarcinoma cells to induce macrophage phenotypic reprogramming through arachidonic acid.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3