An integrative epigenomic approach identifies ELF3 as an oncogenic regulator in ASCL1‐positive neuroendocrine carcinoma

Author:

Horie Masafumi12ORCID,Tanaka Hidenori2,Suzuki Masami2,Sato Yoshihiko2,Takata So2ORCID,Takai Erina2,Miyashita Naoya34ORCID,Saito Akira3ORCID,Nakatani Yoichiro2,Yachida Shinichi256ORCID

Affiliation:

1. Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences Kanazawa University Kanazawa Japan

2. Department of Cancer Genome Informatics, Graduate School of Medicine Osaka University Osaka Japan

3. Department of Respiratory Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan

4. Department of Cell Biology Duke University School of Medicine Durham North Carolina USA

5. Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives Osaka University Osaka Japan

6. Division of Genomic Medicine National Cancer Center Research Institute Tokyo Japan

Abstract

AbstractNeuroendocrine carcinoma (NEC) is a highly aggressive subtype of the neuroendocrine tumor with an extremely poor prognosis. We have previously conducted a comprehensive genomic analysis of over 100 cases of NEC of the gastrointestinal system (GIS‐NEC) and unraveled its unique and organ‐specific genomic drivers. However, the epigenomic features of GIS‐NEC remain unexplored. In this study, we have described the epigenomic landscape of GIS‐NEC and small cell lung carcinoma (SCLC) by integrating motif enrichment analysis from the assay of transposase‐accessible chromatin sequencing (ATAC‐seq) and enhancer profiling from a novel cleavage under targets and tagmentation (CUT&Tag) assay for H3K27ac and identified ELF3 as one of the super‐enhancer–related transcriptional factors in NEC. By combining CUT&Tag and knockdown RNA sequencing for ELF3, we uncovered the transcriptional network regulated by ELF3 and defined its distinctive gene signature, including AURKA, CDC25B, CLDN4, ITGB6, and YWAHB. Furthermore, a loss‐of‐function assay revealed that ELF3 depletion led to poor cell viability. Finally, using gene expression of clinical samples, we successfully divided GIS‐NEC patients into two subgroups according to the ELF3 signature and demonstrated that tumor‐promoting pathways were activated in the ELF3 signature–high group. Our findings highlight the transcriptional regulation of ELF3 as an oncogenic transcription factor and its tumor‐promoting properties in NEC.

Funder

Takeda Science Foundation

Yasuda Memorial Medical Foundation

Mitsubishi Foundation

Princess Takamatsu Cancer Research Fund

Publisher

Wiley

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3