Predicting pharmaceutical supply chain disruptions before and during the COVID‐19 pandemic

Author:

Hupman Andrea C.1ORCID,Zhang Juan2,Li Haitao1

Affiliation:

1. Supply Chain & Analytics Department University of Missouri‐St. Louis St. Louis Missouri USA

2. Marketing and Supply Chain Management University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA

Abstract

AbstractDisruptions to the pharmaceutical supply chain (PSC) have negative implications for patients, motivating their prediction to improve risk mitigation. Although data analytics and machine learning methods have been proposed to support the characterization of probabilities to inform decisions and risk mitigation strategies, their application in the PSC has not been previously described. Further, it is unclear how well these models perform in the presence of emergent events representing deep uncertainty such as the COVID‐19 pandemic. This article examines the use of data‐driven models to predict PSC disruptions before and during the COVID‐19 pandemic. Using data on generic drugs from the pharmacy supply chain division of a Fortune 500 pharmacy benefit management firm, we have developed predictive models based on the naïve Bayes algorithm, where the models predict whether a specific supplier or whether a specific product will experience a supply disruption in the next time period. We find statistically significant changes in the relationships of nearly all variables associated with product supply disruptions during the pandemic, despite pre‐pandemic stability. We present results showing how the sensitivity, specificity, and false positive rate of predictive models changed with the onset of the COVID‐19 pandemic and show the beneficial effects of regular model updating. The results show that maintaining model sensitivity is more challenging than maintaining specificity and false positive rates. The results provide unique insight into the pandemic's effect on risk prediction within the PSC and provide insight for risk analysts to better understand how surprise events and deep uncertainty affect predictive models.

Funder

U.S. Department of Transportation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3