Antifungal activity of puroindoline protein from soft wheat against grain molds and its potential as a biocontrol agent

Author:

Tian P.P.12,Lv Y.Y.1,Wei S.1,Zhang S.B.1,Zheng X.T.1,Hu Y.S.1ORCID

Affiliation:

1. College of Biological Engineering Henan University of Technology Zhengzhou China

2. College of Food & Bioengineering Henan University of Science and Technology Luoyang China

Abstract

Abstract Mold growth reduces the quality of stored grains, besides producing toxins that pose a potential threat to human health. Therefore, prevention of grain mold growth during storage is important to ensure a safe and high-quality product, preferably using an eco-friendly antifungal agent. The puroindoline (PIN) protein was extracted by Triton X-114 and identified by QE mass spectrometry. Aspergillus flavus has attracted much attention because of its toxic secondary metabolites, and PIN protein showed a significant inhibition on A. flavus growth. Scanning electron microscopy revealed altered spore morphology of A. flavus following PIN protein treatment, and propidium iodide staining showed incomplete spore cell membranes. The disruption and deformation of A. flavus spores suggest that the cell walls and cell membranes were compromised. Decreased mitochondrial membrane potential and increased levels of intracellular reactive oxygen specieswere detected using JC-1 and 2,7-dichlorodihydrofluorescein diacetate staining, respectively. PIN protein could effectively inhibit the growth and aflatoxins B1 production of A. flavus in stored grains, such as wheat and rice. PIN proteins can inhibit the growth of many common grain storage molds, including Penicillium, Aspergillus spp. (A. flavus, A. glaucus, A. kawachii, A. ochraceus and A. niger), Alternaria and Fusarium graminearum, in a dose-dependent manner. PIN protein has a significant inhibitory effect on the growth of grain molds, with a stronger inhibitory effect noted in wheat and rice. Our study provides a novel and simple theoretical basis for the selection and storage of mold resistance in grains and food during storage.

Funder

National Natural Science Foundation of China

Innovative Funds Plan of Henan University of Technology

the Cultivation Programme for Young Backbone Teachers in Henan University of Technology

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3