Functional analysis of a novel G87V TNFRSF1A mutation in patients with TNF receptor-associated periodic syndrome

Author:

Tsuji S1ORCID,Matsuzaki H2,Iseki M3,Nagasu A1,Hirano H1,Ishihara K3,Ueda N4,Honda Y5,Horiuchi T6,Nishikomori R57,Morita Y1ORCID,Mukai T1ORCID

Affiliation:

1. Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama, Japan

2. Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan

3. Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan

4. Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan

5. Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan

6. Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Oita, Japan

7. Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka, Japan

Abstract

Summary Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autoinflammatory disease that is caused by heterozygous mutations in the TNFRSF1A gene. Although more than 150 TNFRSF1A mutations have been reported to be associated with TRAPS phenotypes only a few, such as p.Thr79Met (T79M) and cysteine mutations, have been functionally analyzed. We identified two TRAPS patients in one family harboring a novel p.Gly87Val (G87V) mutation in addition to a p.Thr90Ile (T90I) mutation in TNFRSF1A. In this study, we examined the functional features of this novel G87V mutation. In-vitro analyses using mutant TNF receptor 1 (TNF-R1)-over-expressing cells demonstrated that this mutation alters the expression and function of TNF-R1 similar to that with the previously identified pathogenic T79M mutation. Specifically, cell surface expression of the mutant TNF-R1 in transfected cells was inhibited with both G87V and T79M mutations, whereas the T90I mutation did not affect this. Moreover, peripheral blood mononuclear cells (PBMCs) from TRAPS patients harboring the G87V and T90I mutations showed increased mitochondrial reactive oxygen species (ROS). Furthermore, the effect of various Toll-like receptor (TLR) ligands on inflammatory responses was explored, revealing that PBMCs from TRAPS patients are hyper-responsive to TLR-2 and TLR-4 ligands and that interleukin (IL)-8 and granulocyte–macrophage colony-stimulating factor (GM-CSF) are likely to be involved in the pathogenesis of TRAPS. These findings suggest that the newly identified G87V mutation is one of the causative mutations of TRAPS. Our findings based on unique TRAPS-associated mutations provide novel insight for clearer understanding of inflammatory responses, which would be basic findings of developing a new therapeutic and prophylactic approach to TRAPS.

Funder

Japan Society for the Promotion of Science

The Kawasaki Foundation for Medical Science and Medical Welfare

Kawasaki Medical School

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3