Identifying conservation priority areas forNorth Americanbumble bee species inCanadaunder current and future climate scenarios

Author:

Liczner Amanda R.12ORCID,Schuster Richard34,Richardson Leif L.5,Colla Sheila R.6

Affiliation:

1. Department of Biology York University Toronto Ontario Canada

2. School of Environmental Sciences, University of Guelph Guelph Ontario Canada

3. Department of Biology Carleton University Ottawa Ontario Canada

4. Nature Conservancy of Canada Toronto Ontario Canada

5. The Xerces Society for Invertebrate Conservation Oregon Portland USA

6. Faculty of Environmental and Urban Change, York University Toronto Ontario Canada

Abstract

AbstractMany bumble bee species are declining globally from multiple threats including climate change. Identifying conservation priority areas with a changing climate will be important for conserving bumble bee species. Using systematic conservation planning, we identified priority areas for 44 bumble bee species in Canada under current and projected climates (year 2050). Conservation priority areas were identified as those that contained targeted amounts of each species predicted occurrence through climate envelope models, while minimizing the area cost of conserving the identified conservation priority areas. Conservation priority areas in the two periods were compared to established protected areas and land cover types to determine the area of current and future priority sites that are protected and the types of landscapes within priority areas. Notably, conservation priority areas were rarely within established protected areas. Priority areas were most often in croplands and grasslands, mainly within the mountain west, central and Southern Ontario, Northern Quebec, and Atlantic Canada under all climate scenarios. Conservation priority areas are predicted to increase in elevation and latitude with climate change. Our findings identify the most important regions in Canada for conserving bumble bee species under current and future climates including consistently selected future sites.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3