Total response models as a conceptual management framework for conserving vulnerable secondary prey

Author:

Norbury Grant L.1ORCID,Reardon James T.2

Affiliation:

1. Manaaki Whenua – Landcare Research Alexandra New Zealand

2. Department of Conservation, Lakefront Drive Te Anau New Zealand

Abstract

AbstractMany of the world's native fauna suffer unsustainable losses from invasive mammalian predators. Conservation managers control predators on the premise that if large numbers are removed, prey will respond. This is sometimes true, but not always. Empirical relationships between predator densities and responses of vulnerable prey in Oceania often show little or no response across a broad range of predator reductions, with positive responses only at low threshold predator densities. Even then, some prey populations fail to respond. More research is required to identify predator thresholds across a range of prey taxa. This uncertainty of outcomes, coupled with the considerable cost of mammalian pest control, risks little or no return from limited conservation funds. A unifying theory is required to help understand why conservation outcomes from predator control are so variable despite the best efforts of conservation managers, and to expedite the right kind of management for a given prey species. We argue that a modern synthesis of numerical and functional response theory, in the form of total response models, provides such a theory. Stochastic consumer‐resource models are recommended for dynamic systems, but they are difficult to parameterize. Total response models, on the other hand, present a simple conceptual framework that managers can use as a heuristic to understand predator–prey systems, help explain some of the variability in predator control outcomes and stimulate thinking about other management options that can be integrated with predator control to improve conservation outcomes. Five rules of thumb are suggested to assist conservation managers.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3