Of Mojave milkweed and mirrors: The population genomic structure of a species impacted by solar energy development

Author:

Wade Miranda J.12ORCID,Moore‐O'Leary Kara3ORCID,Grodsky Steven M.4ORCID,Hernandez Rebecca R.56ORCID,Meek Mariah H.12ORCID

Affiliation:

1. Department of Integrative Biology Michigan State University East Lansing Michigan USA

2. Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA

3. U.S. Fish and Wildlife Service's Pacific Southwest Region Sacramento California USA

4. Institute of the Environment University of California Davis California USA

5. Department of Land, Air & Water Resources University of California Davis California USA

6. Wild Energy Center University of California Davis California USA

Abstract

AbstractA rapid renewable energy transition has facilitated the development of large, ground‐mounted solar energy facilities worldwide. Deserts, and other sensitive aridland ecosystems, are the second most common land‐cover type for solar energy development globally. Thus, it is necessary to understand existing diversity within environmentally sensitive desert plant populations to understand spatiotemporal effects of solar energy siting and design. Overall, few population genomic studies of desert plants exist, and much of their biology is unknown. To help fill this knowledge gap, we sampled Mojave milkweed (Asclepias nyctaginifolia) in and around the Ivanpah Solar Electric Generating Station (ISEGS) in the Mojave Desert of California to understand the species' population structure, standing genetic variation, and how that intersects with solar development. We performed Restriction‐site Associated Sequencing (RADseq) and discovered 9942 single nucleotide polymorphisms (SNPs). Using these data, we found clear population structure over small spatial scales, suggesting each site sampled comprised a genetically distinct population of Mojave milkweed. While mowing, in lieu of blading, the vegetation across the solar energy facility's footprint prevented the immediate loss of the ISEGS Mojave milkweed population, we show that the effects of land‐cover change, especially those impacting desert washes, may impact long‐term genetic diversity and persistence. Potential implications of this include a risk of overall loss of genetic diversity, or even hastened extirpation. These findings highlight the need to consider the genetic diversity of impacted species when predicting the impact and necessary conservation measures of large‐scale land‐cover changes on species with small population sizes.

Funder

California Energy Commission

U.S. Bureau of Land Management

Publisher

Wiley

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3