Global biome patterns of the Middle and Late Pleistocene

Author:

Huntley Brian1ORCID,Allen Judy R. M.1,Forrest Matthew2,Hickler Thomas23,Ohlemüller Ralf4ORCID,Singarayer Joy S.5,Valdes Paul J.6

Affiliation:

1. Department of Biosciences Durham University South Road Durham DH1 3LE UK

2. Senckenberg Biodiversity and Climate Research Centre Senckenberganlage 25 D‐60325 Frankfurt am Main Germany

3. Institute of Physical Geography Goethe‐University Altenhöferallee 1 D‐60438 Frankfurt am Main Germany

4. School of Geography University of Otago PO Box 56 Dunedin 9054 New Zealand

5. Department of Meteorology University of Reading PO Box 243 Reading RG6 6BB UK

6. School of Geographical Sciences University of Bristol University Road, Clifton Bristol BS8 1SS UK

Abstract

AbstractOur primary aim was to assess the hypothesis that distinctive features of the patterns of vegetation change during successive Quaternary glacial–interglacial cycles reflect climatic differences arising from forcing differences. We addressed this hypothesis using 207 half‐degree resolution global biome pattern simulations, for time slices between 800 and 2 ka, made using the LPJ‐GUESS dynamic global vegetation model. Simulations were driven using ice‐core atmospheric CO2 concentrations, Earth's obliquity, and outputs from a pre‐industrial and 206 palaeoclimate experiments; four additional simulations were driven using projected future CO2 concentrations. Climate experiments were run using HadCM3. Using a rule‐based approach, above‐ground biomass and leaf area index of LPJ‐GUESS plant functional types were used to infer each grid cell's biome. The hypothesis is supported by the palaeobiome simulations. To enable comparisons with the climatic forcing, multivariate analyses were performed of global vegetation pattern dissimilarities between simulations. Results showed generally similar responses to glacial–interglacial climatic variations during each cycle, although no two interglacials or glacials had identical biome patterns. Atmospheric CO2 concentration was the strongest driver of the dissimilarity patterns. Dissimilarities relative to the time slice with the lowest atmospheric CO2 concentration show the log‐linear relationship to atmospheric CO2 concentration expected of an index of ecocarbon sensitivity. For each simulation, extent and total above‐ground biomass of each biome were calculated globally and for three longitudinal segments corresponding to the major continental regions. Mean and minimum past extents of forest biomes, notably Temperate Summergreen Forest, in the three major continental regions strongly parallel relative tree diversities, hence supporting the hypothesis that past biome extents played an important role in determining present diversity. Albeit that they reflect the climatic consequences only of the faster Earth system components, simulated potential future biome patterns are unlike any during the past 800 ky, and likely will continue to change markedly for millennia if projected CO2 concentrations are realised.

Funder

Leverhulme Trust

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3