Global synthesis on the response of soil microbial necromass carbon to climate‐smart agriculture

Author:

Li Yüze12ORCID,Wang Shengnan3,Yang Yali4,Ren Liang5,Wang Ziting6ORCID,Liao Yuncheng7ORCID,Yong Taiwen12

Affiliation:

1. College of Agronomy Sichuan Agricultural University Chengdu Sichuan China

2. Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest Ministry of Agriculture Chengdu Sichuan China

3. School of Biological and Chemical Engineering Panzhihua University Panzhihua Sichuan China

4. Institute of Applied Ecology Chinese Academy of Sciences Shenyang Liaoning China

5. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment Tsinghua University Beijing China

6. College of Agronomy Guangxi University Nanning Guangxi China

7. College of Agronomy Shanxi Agricultural University Taigu Jinzhong China

Abstract

AbstractClimate‐smart agriculture (CSA) supports the sustainability of crop production and food security, and benefiting soil carbon storage. Despite the critical importance of microorganisms in the carbon cycle, systematic investigations on the influence of CSA on soil microbial necromass carbon and its driving factors are still limited. We evaluated 472 observations from 73 peer‐reviewed articles to show that, compared to conventional practice, CSA generally increased soil microbial necromass carbon concentrations by 18.24%. These benefits to soil microbial necromass carbon, as assessed by amino sugar biomarkers, are complex and influenced by a variety of soil, climatic, spatial, and biological factors. Changes in living microbial biomass are the most significant predictor of total, fungal, and bacterial necromass carbon affected by CSA; in 61.9%–67.3% of paired observations, the CSA measures simultaneously increased living microbial biomass and microbial necromass carbon. Land restoration and nutrient management therein largely promoted microbial necromass carbon storage, while cover crop has a minor effect. Additionally, the effects were directly influenced by elevation and mean annual temperature, and indirectly by soil texture and initial organic carbon content. In the optimal scenario, the potential global carbon accrual rate of CSA through microbial necromass is approximately 980 Mt C year−1, assuming organic amendment is included following conservation tillage and appropriate land restoration. In conclusion, our study suggests that increasing soil microbial necromass carbon through CSA provides a vital way of mitigating carbon loss. This emphasizes the invisible yet significant influence of soil microbial anabolic activity on global carbon dynamics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3