The role of mitochondrial dynamics in the pathophysiology of endometriosis

Author:

Kobayashi Hiroshi12ORCID,Matsubara Sho23ORCID,Yoshimoto Chiharu24,Shigetomi Hiroshi25,Imanaka Shogo12

Affiliation:

1. Department of Gynecology and Reproductive Medicine Ms.Clinic MayOne Kashihara Japan

2. Department of Obstetrics and Gynecology Nara Medical University Kashihara Japan

3. Department of Medicine Kei Oushin Clinic Nishinomiya Japan

4. Department of Obstetrics and Gynecology Nara Prefecture General Medical Center Nara Japan

5. Department of Gynecology and Reproductive Medicine Aska Ladies Clinic Nara Japan

Abstract

AbstractAimEndometriosis is a chronic disease of reproductive age, associated with pelvic pain and infertility. Endometriotic cells adapt to changing environments such as oxidative stress and hypoxia in order to survive. However, the underlying mechanisms remain to be fully elucidated. In this review, we summarize our current understanding of the pathogenesis of endometriosis, focusing primarily on the molecular basis of energy metabolism, redox homeostasis, and mitochondrial function, and discuss perspectives on future research directions.MethodsPapers published up to March 31, 2023 in the PubMed and Google Scholar databases were included in this narrative literature review.ResultsMitochondria serve as a central hub sensing a multitude of physiological processes, including energy production and cellular redox homeostasis. Under hypoxia, endometriotic cells favor glycolysis and actively produce pyruvate, nicotinamide adenine dinucleotide phosphate (NADPH), and other metabolites for cell proliferation. Mitochondrial fission and fusion dynamics may regulate the phenotypic plasticity of cellular energy metabolism, that is, aerobic glycolysis or OXPHOS. Endometriotic cells have been reported to have reduced mitochondrial numbers, increased lamellar cristae, improved energy efficiency, and enhanced cell proliferation and survival. Increased mitochondrial fission and fusion turnover by hypoxic and normoxic conditions suggests an activation of mitochondrial quality control mechanisms. Recently, candidate molecules that influence mitochondrial dynamics have begun to be identified.ConclusionThis review suggests that unique energy metabolism and redox homeostasis driven by mitochondrial dynamics may be linked to the pathophysiology of endometriosis. However, further studies are needed to elucidate the regulatory mechanisms of mitochondrial dynamics in endometriosis.

Publisher

Wiley

Subject

Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3