Hydrogen isotope fractionation in plants with C3, C4, and CAM CO2 fixation

Author:

Schuler Philipp123ORCID,Rehmann Oliver1,Vitali Valentina1ORCID,Saurer Matthias1ORCID,Oettli Manuela1,Cernusak Lucas A.4ORCID,Gessler Arthur12ORCID,Buchmann Nina2ORCID,Lehmann Marco M.15ORCID

Affiliation:

1. Forest Dynamics Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf 8903 Switzerland

2. Department of Environmental Systems Science ETH Zurich Zurich 8006 Switzerland

3. School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

4. College of Science and Engineering, James Cook University Smithield New South Wales 4878 Australia

5. Forest Soils and Biogeochemistry Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf 8903 Switzerland

Abstract

Summary Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δ2H) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for 2H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO2 fixation pathways (C3, C4, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD). We show significant differences in autotrophic 2H fractionation (εA) from water to sugar among the pathways and their response to changes in air temperature and VPD. The strong 2H depleting εA in C3 plants is likely driven by the photosynthetic H+ production within the thylakoids, a reaction that is spatially separated in C4 and strongly reduced in CAM plants, leading to the absence of 2H depletion in the latter two types. By contrast, we found that the heterotrophic 2H‐fractionation (εH) from sugar to cellulose was very similar among the three pathways and is likely driven by the plant's metabolism, rather than by isotopic exchange with leaf water. Our study offers new insights into the biochemical drivers of 2H fractionation in plant carbohydrates.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3