Classification of posttransfusion adverse events using a publicly available artificial intelligence system

Author:

Fung Mark K.1ORCID,AuBuchon James P.2,Stephens Laura D.3ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine University of Vermont Larner College of Medicine Burlington Vermont USA

2. Department of Laboratory Medicine and Pathology University of Washington Seattle Washington USA

3. Department of Pathology University of California San Diego San Diego California USA

Abstract

AbstractBackgroundCorrect classification of transfusion reactions is important not only for effective patient care and donor management but also for accurate tracking of events in hemovigilance systems. We compared the ability of a generative artificial intelligence (AI) system to correctly diagnose hypothetical clinical situations as transfusion reactions in comparison to previous studies reporting the accuracy of transfusion medicine (TM) specialists in assessing these cases.MethodsAn AI system was requested to assess 36 case scenarios to provide a diagnosis, severity, and imputability of the transfusion reactions using the CDC National Healthcare Safety Network (NHSN) criteria. Responses were compared to an expert panel's classifications and to the published responses of a panel of TM specialists. Additionally, the AI's responses were compared to the TM specialists' prior attempts to use the TrDDx web‐based algorithm for the five most challenging cases.ResultsThe AI's classification accuracy varied widely depending on the NHSN category. The AI accurately classified all transfusion‐associated circulatory overload and transfusion‐related acute lung injury cases, exceeding TM specialists' assessments. Conversely, it did not correctly identify any cases in select NHSN categories such as DSTR. Overall accuracy among all diagnostic categories was 48.7% for AI responses versus 72.1% for prior TM specialist responses (p = 0.005). AI‐generated responses included non‐standard terminology, limited severity assessments, and no imputability determinations.DiscussionA generative AI system may have a role in helping healthcare providers to consider transfusion reaction categories that might be missed, but caution is advised in applying the AI's output to transfusion reaction classification at present.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3