Validation of point process predictions with proper scoring rules

Author:

Heinrich‐Mertsching Claudio1ORCID,Thorarinsdottir Thordis L.12,Guttorp Peter1,Schneider Max3

Affiliation:

1. Norwegian Computing Center Blindern Oslo Norway

2. Department of Mathematics University of Oslo Blindern Oslo Norway

3. Department of Statistics University of Washington Seattle Washington USA

Abstract

AbstractWe introduce a class of proper scoring rules for evaluating spatial point process forecasts based on summary statistics. These scoring rules rely on Monte Carlo approximations of expectations and can therefore easily be evaluated for any point process model that can be simulated. In this regard, they are more flexible than the commonly used logarithmic score and other existing proper scores for point process predictions. The scoring rules allow for evaluating the calibration of a model to specific aspects of a point process, such as its spatial distribution or tendency toward clustering. Using simulations, we analyze the sensitivity of our scoring rules to different aspects of the forecasts and compare it to the logarithmic score. Applications to earthquake occurrences in northern California, United States and the spatial distribution of Pacific silver firs in Findley Lake Reserve in Washington highlight the usefulness of our scores for scientific model selection.

Funder

Norges Forskningsråd

Publisher

Wiley

Reference59 articles.

1. On bandwidth variation in kernel estimates‐a square root law;Abramson I. S.;The Annals of Statistics,1982

2. Score, pseudo‐score and residual diagnostics for spatial point process models;Baddeley A.;Statistical Science,2011

3. Spatial Point Patterns

4. Residual analysis for spatial point processes;Baddeley A.;Journal of the Royal Statistical Society Series B,2005

5. Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns;Baddeley A. J.;Statistica Neerlandica,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3