Empirical likelihood M‐estimation for the varying‐coefficient model with functional response

Author:

Zhou Xingcai1,Kong Dehan2,Pietrosanu Matthew Stephen3ORCID,Kong Linglong3ORCID,Karunamuni Rohana J.3

Affiliation:

1. School of Statistics and Data Science Nanjing Audit University Nanjing China

2. Department of Statistical Sciences University of Toronto Toronto Ontario Canada

3. Department of Mathematical and Statistical Sciences University of Alberta Edmonton Alberta Canada

Abstract

AbstractThis work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Reference30 articles.

1. M‐estimation of multivariate linerar regression parametrers under a convex discrepancy function;Bai Z.;Statistica Sinica,1992

2. Robust non‐parametric function estimation;Fan J.;Scandinavian Journal of Statistics,1994

3. Efficient estimation of conditional variance functions in stochastic regression

4. Cross-Validation and the Estimation of Conditional Probability Densities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3